Перевод: с английского на все языки

со всех языков на английский

преимущества управления

  • 1 преимущества управления

    Большой англо-русский и русско-английский словарь > преимущества управления

  • 2 management advantages

    Большой англо-русский и русско-английский словарь > management advantages

  • 3 field bus

    1. полевая шина

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > field bus

  • 4 fieldbus

    1. полевая шина

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > fieldbus

  • 5 smart metering

    1. интеллектуальный учет электроэнергии

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > smart metering

  • 6 remote maintenance

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote maintenance

  • 7 remote sevice

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote sevice

  • 8 DC

    1. цифровая вычислительная машина
    2. центр обработки данных
    3. система цифрового управления
    4. символ управления устройством
    5. сбросной конденсатор
    6. разработчик проекта
    7. работающий на постоянном токе
    8. пульт диспетчера
    9. прямое включение
    10. постоянный ток
    11. охладитель дренажей на ТЭС
    12. отстойник (осветлитель)
    13. осаждённая угольная частица
    14. описание (функциональная связь)
    15. контроль документооборота
    16. конденсатор выпара
    17. компенсация дисперсии
    18. канал дренажей
    19. канал (передачи) данных
    20. изменение конструкции или проекта
    21. завершение проекта
    22. дрейфовая камера
    23. двойной контакт

     

    двойной контакт

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    дрейфовая камера

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    завершение проекта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    изменение конструкции или проекта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    канал (передачи) данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    канал дренажей

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    компенсация дисперсии
    (МСЭ-Т G.959.1).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    конденсатор выпара

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    контроль документооборота

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    осаждённая угольная частица

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отстойник (осветлитель)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    охладитель дренажей на ТЭС

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    постоянный ток
    Электрический ток, не изменяющийся во времени.
    Примечание — Аналогично определяют постоянные электрическое напряжение, электродвижущую силу, магнитный поток и т. д.
    [ ГОСТ Р 52002-2003]

    Параллельные тексты EN-RU

    For definition, the electric current called “direct” has a unidirectional trend constant in time.
    As a matter of fact, by analyzing the motion of the charges at a point crossed by a direct current, it results that the quantity of charge (Q) flowing through that point (or better, through that cross section) in each instant is always the same.

    [ABB]

    Постоянным током называется электрический ток, значение и направление которого, не изменяются во времени.
    Если рассматривать постоянный ток как прохождение элементарных электрических зарядов через определенную точку, то значение заряда (Q), протекающего через эту точку (а вернее через это поперечное сечение проводника) за единицу времени будет постоянным.

    [Перевод Интент]

    Direct current, which was once the main means of distributing electric power, is still widespread today in the electrical plants supplying particular industrial applications.

    The advantages in terms of settings, offered by the employ of d.c. motors and by supply through a single line, make direct current supply a good solution for railway and underground systems, trams, lifts and other transport means.

    In addition, direct current is used in conversion plants (installations where different types of energy are converted into electrical direct energy, e.g. photovoltaic plants) and, above all, in those emergency applications where an auxiliary energy source is required to supply essential services, such as protection systems, emergency lighting, wards and factories, alarm systems, computer centers, etc..

    Accumulators - for example – constitute the most reliable energy source for these services, both directly in direct current as well as by means of uninterruptible power supply units (UPS), when loads are supplied in alternating current.

    [ABB]

    Когда-то электрическая энергия передавалась и распределялась только на постоянном токе. Но и в настоящее время в отдельных отраслях промышленности постоянный ток применяется достаточно широко.

    Возможности использования двигателей постоянного тока и передачи электроэнергии по линии с меньшим числом проводников дают неоспоримые преимущества при электроснабжении железных дорог, подземного транспорта, трамваев, лифтов и т. д.

    Кроме того, существуют источники постоянного тока, являющиеся преобразователями различных видов энергии непосредственно в электрическую энергию, например, фотоэлектрические станции. Дополнительные источники постоянного тока применяют в аварийных ситуациях для питания систем защиты, аварийного освещения жилых районов и на производстве, систем сигнализации, компьютерных центров и т. д.

    Для решения указанных задач наиболее подходящим источником электроэнергии является аккумулятор. Нагрузки постоянного тока получают электропитание непосредственно от аккумулятора. Нагрузки переменного тока – от источника бесперебойного питания (ИБП), частью которого является аккумулятор.

    [Перевод Интент]

    Direct current can be generated:
    - by using batteries or accumulators where the current is generated directly through chemical processes;
    - by the rectification of alternating current through rectifiers (static conversion);
    - by the conversion of mechanical work into electrical energy using dynamos (production through rotating machines).

    [ABB]

    Постоянный ток можно получить следующими способами:
    - от аккумуляторов, в которых электрическая энергия образуется за счет происходящих внутри аккумулятора химических реакций;
    - выпрямлением переменного тока с помощью выпрямителей (статических преобразователей);
    - преобразованием механической энергии в электрическую с помощью генераторов постоянного тока (вращающихся машин).

    [Перевод Интент]

    In the low voltage field, direct current is used for different applications, which, in the following pages, have been divided into four macrofamilies including:

    - conversion into other forms of electrical energy (photovoltaic plants, above all where accumulator batteries are used);
    - electric traction (tram-lines, underground railways, etc.);
    - supply of emergency or auxiliary services;
    - particular industrial installations (electrolytic processes, etc.).

    [ABB]

    Можно выделить четыре области применения постоянного тока в низковольтных электроустановках:

    - преобразование различных видов энергии в электрическую (фотоэлектрические установки с аккумуляторными батареями);
    - энергоснабжение транспорта на электрической тяге (трамваи, метро и т. д.)
    - электропитание аварийных или вспомогательных служб;
    - специальные промышленные установки (например, с использованием электролитических процессов и т. п.).

    [Интент]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    прямое включение

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    пульт диспетчера

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    работающий на постоянном токе

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    разработчик проекта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    сбросной конденсатор

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    символ управления устройством

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    система цифрового управления

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    центр обработки данных
    центр обработки и хранения данных
    ЦОД
    Консолидированный комплекс инженерно-технических средств, обеспечивающий безопасную централизованную обработку, хранение и предоставление данных, сервисов и приложений, а также вычислительную инфраструктуру для автоматизации бизнес-задач компании. ЦОД состоит из следующих элементов: серверного комплекса, хранилища данных, сети передачи данных, инфраструктуры, организационной структуры, системы управления.
    [ http://www.dtln.ru/slovar-terminov]

    Тематики

    Синонимы

    EN

     

    цифровая вычислительная машина

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DC

  • 9 DALI

    1. цифровой адресный интерфейс освещения

     

    цифровой адресный интерфейс освещения
    -
    [Интент]

    Цифровой адресный интерфейс освещения (Digital Addressable Lighting Interface) — стандартный цифровой протокол управления освещением с помощью таких устройств, как электронные балласты (для люминесцентного света) и диммеры (для ламп накаливания).
    Преимущества

    • DALI является открытым протоколом, доступным для всех производителей.
    • Для формирования шины связи всех устройств одной DALI сети требуются лишь два провода, причём нет необходимости соблюдать полярность.
    • Протокол DALI специально разработан для управления освещением, которым управляет более гибко и дешевле других систем автоматизации и управления зданиями.
    • Не являясь высокоскоростной RS485 сетью, DALI допускает любую топологию кабельной сети, вплоть до смешанной. Также не требуется использование терминаторов на концах линий.
    • DALI — децентрализованная шина, то есть не имеет центрального контроллера. Каждое DALI устройство имеет энергонезависимую память, в которой хранятся его настройки: адрес, членство в группах, сценарные уровни.
    • DALI система не определена, как исключительно слаботочная система по стандарту IEC 61140 (безопасность экстра низкого напряжения) и поэтому может работать рядом с силовыми линиями, или, даже, использовать часть жил многожильных силовых кабелей. Также DALI линия предполагает защиту от случайного подключения силовой линии.
    • DALI сигнал имеет высокое соотношение (сигнал / шум), которое допускает безвредное воздействие шумов высокого уровня.
    • DALI имеет три варианта адресации команд: адресные, групповые и широковещательные. Также сами команды могут означать не только конкретный уровень, но и заранее записанный сценарий. Такой подход сильно уменьшает количество передаваемой по DALI шине информации.
    • Команды имеют формат: «адрес, команда», например: «группа1, 100 %», или «ВСЕ, Сцена1».
    • Одна линия DALI допускает использование до 64 независимых устройств, для построения больших систем требуется использование DALI Роутеров, которые позволяют объединить вместе до 200 DALI подсистем.
    • Системы управления освещением DALI можно легко интегрировать в другие системы автоматизации и управления зданиями (САиУЗ), например, LON, KNX/EIB, BACNet.

    [ http://ru.wikipedia.org/wiki/DALI]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DALI

  • 10 Digital Addressable Lighting Interface

    1. цифровой адресный интерфейс освещения

     

    цифровой адресный интерфейс освещения
    -
    [Интент]

    Цифровой адресный интерфейс освещения (Digital Addressable Lighting Interface) — стандартный цифровой протокол управления освещением с помощью таких устройств, как электронные балласты (для люминесцентного света) и диммеры (для ламп накаливания).
    Преимущества

    • DALI является открытым протоколом, доступным для всех производителей.
    • Для формирования шины связи всех устройств одной DALI сети требуются лишь два провода, причём нет необходимости соблюдать полярность.
    • Протокол DALI специально разработан для управления освещением, которым управляет более гибко и дешевле других систем автоматизации и управления зданиями.
    • Не являясь высокоскоростной RS485 сетью, DALI допускает любую топологию кабельной сети, вплоть до смешанной. Также не требуется использование терминаторов на концах линий.
    • DALI — децентрализованная шина, то есть не имеет центрального контроллера. Каждое DALI устройство имеет энергонезависимую память, в которой хранятся его настройки: адрес, членство в группах, сценарные уровни.
    • DALI система не определена, как исключительно слаботочная система по стандарту IEC 61140 (безопасность экстра низкого напряжения) и поэтому может работать рядом с силовыми линиями, или, даже, использовать часть жил многожильных силовых кабелей. Также DALI линия предполагает защиту от случайного подключения силовой линии.
    • DALI сигнал имеет высокое соотношение (сигнал / шум), которое допускает безвредное воздействие шумов высокого уровня.
    • DALI имеет три варианта адресации команд: адресные, групповые и широковещательные. Также сами команды могут означать не только конкретный уровень, но и заранее записанный сценарий. Такой подход сильно уменьшает количество передаваемой по DALI шине информации.
    • Команды имеют формат: «адрес, команда», например: «группа1, 100 %», или «ВСЕ, Сцена1».
    • Одна линия DALI допускает использование до 64 независимых устройств, для построения больших систем требуется использование DALI Роутеров, которые позволяют объединить вместе до 200 DALI подсистем.
    • Системы управления освещением DALI можно легко интегрировать в другие системы автоматизации и управления зданиями (САиУЗ), например, LON, KNX/EIB, BACNet.

    [ http://ru.wikipedia.org/wiki/DALI]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Digital Addressable Lighting Interface

  • 11 resource-based view

    сокр. RBV упр. ресурсная теория [концепция\] (концепция стратегического управления, согласно которой следует выявлять и развивать уникальные ресурсы или способности фирмы, позволяющие достичь конкурентного преимущества; в предыдущих школах стратегического управления неявно предполагалось, что все ресурсы являются однородными и все дело только в их комбинациях; в ресурсной концепции предполагается, что все ресурсы разные и необходимо анализировать ресурсы компании с точки зрения их возможностей приносить экономическую ренту; задача стратегического управления — сохранять и привлекать в компанию ресурсы, которые могут приносить экономическую ренту, определять наиболее выгодную сферу их использования и добиваться высокой рентабельности)
    Syn:
    See:

    Англо-русский экономический словарь > resource-based view

  • 12 RDB

    1. Совет по научным исследованиям и разработкам (США)
    2. реляционная база данных
    3. база данных информации маршрутизации

     

    база данных информации маршрутизации
    (МСЭ-T G.7715/ МСЭ-Т Y.1706).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    реляционная база данных
    База данных, реализованная в соответствии с реляционной моделью данных.
    [ ГОСТ 20886-85]

    реляционная БД

    База данных, логически организованная в виде набора отношений ее компонентов.
    Характерной особенностью реляционной базы данных является структура, выполненная в виде таблиц. Строки таких таблиц соответствуют записям, столбцы - атрибутам (признакам хранимых данных). Например, таблица, в которой имеются столбцы: фамилия, год рождения, место работы, домашний адрес, телефон, а в строках записываются эти сведения о сотрудниках предприятия. Такие данные являются ядром реляционной базы.
    Использование реляционных баз данных позволяет:
    собирать и хранить данные в виде таблиц;
    обновлять их содержание;
    получать разнообразную информацию по атрибутам или записям;
    отображать полученные данные в виде диаграмм или таблиц;
    выполнять необходимые расчеты по материалам базы.
    (Терминологическая база данных по информатике и бизнесу [Электронный ресурс])
    [ http://www.morepc.ru/dict/]


    Системы управления реляционными базами данных


    Процесс отделения программ от структур данных завершили, в конечном итоге, реляционные базы данных (РБД).

    В РБД все данные представлены исключительно в формате таблиц, или, по терминологии реляционной алгебры, отношений (relation). Таблица в реляционной алгебре - это неупорядоченное множество записей (строк), состоящих из одинакового набора полей (столбцов). Каждая строка характеризует некий объект, каждый столбец - одну из его характеристик. Совокупность таких связанных таблиц и составляет БД, при этом таблицы полностью равноправны - между ними не существует никакой иерархии. Реляционная модель является простейшей и наиболее привычной формой представления данных.

    Можно было бы привести более строгое определение, но это не является пред-метом настоящей статьи. Здесь нам важно отметить следующее. РБД позволили моделям данных отражать взаимосвязи прикладной области, а не методы программного доступа к данным и структурам данных. Это огромный шаг вперед по нескольким причинам:

    Отражающие прикладную область знаний модели данных являются интуитивно понятными конечному пользователю.

    Реорганизация данных на физическом уровне совершенно не влияет на выпол-нение прикладных программ. Одним из важнейших побочных эффектов данного преимущества является появление клиент-серверных архитектур, сохраняющих все достоинства централизованного администрирования и управления данными, с одной стороны, и дружески настроенных по отношению к пользователю клиентских программ, с другой. Благодаря нормализации удается избежать чрезмерного дублирования данных.

    По идее, с точки зрения быстродействия, реляционные СУБД должны проигры-вать сетевым и иерархическим моделям. Однако специальные методы, в частности, индексирование БД, позволяют поддерживать их скоростные характеристики на достаточно высоком уровне.

    Развитие РБД

    По мере все более широкого распространения реляционных моделей данных крупные поставщики БД расширяли функциональные возможности, повышали производительность в борьбе за место на рынке. В качестве примеров новых функций можно привести следующее:
    • Хранимые процедуры
      Откомпилированные последовательности SQL-операторов, которые хранятся в БД. Хранимые процедуры исполняются быстрее обычных SQL-операторов, уменьшают объем сетевого трафика и скрывают сложность SQL-выражений от конечного пользователя.
    • Триггеры
      Последовательности SQL-операторов, автоматически запускаемые сервером при возникновении определенных, связанных с данными событий. Обычно они используются для поддержания целостности данных и выполнения таких, связанных с модификацией данных, операций, как трассировка (распечатка программой связанных с ее выполнением событий) и аудирование (ведение журнала событий с целью обеспечения безопасности вычислительной системы.).
       
    • Дублирование и рассредоточение.
      Довольно часто с целью повышения произво-дительности, безопасности и готовности информации приходится дублировать данные на удаленных БД. Например, дублировать хранящуюся на удаленном сервере итоговую производственную информацию в центральной БД.
       
    • Взаимодействие с другими системами.
      После того, как электронная почта приобрела широкую популярность, поставщики БД разработали интерфейс, позволяющий посылать определенные почтовые сообщения в момент возникновения определенных, связанных с операциями над данными, событиями.
    [ http://www.rtsoft-training.ru/?p=600017]

    Тематики

    Синонимы

    EN

     

    Совет по научным исследованиям и разработкам (США)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > RDB

  • 13 CS

    1. шкала уровней серого цвета
    2. управляемый останов
    3. сепаратор конденсата
    4. сегмент линии
    5. регулируемый останов
    6. подуровень конвергенции
    7. набор возможностей интеллектуальной сети (этап стандартизации)
    8. набор возможностей
    9. лист изменений
    10. ливень короны (в электрофильтре)
    11. криптосистема
    12. криптографическая система
    13. контроль носителя
    14. компьютерные науки
    15. канал связи (в SCADA)
    16. впрыск теплоносителя в защитную оболочку
    17. впрыск теплоносителя в активную зону (при аварии ядерного реактора)
    18. безопасность защитной оболочки ядерного реактора

     

    безопасность защитной оболочки ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    впрыск теплоносителя в активную зону (при аварии ядерного реактора)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    впрыск теплоносителя в защитную оболочку
    (при аварии ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    канал связи
    -
    [Интент]

    Каналы связи (CS)
    Каналы связи для современных диспетчерских систем отличаются большим разнообразием; выбор конкретного решения зависит от архитектуры системы, расстояния между диспетчерским пунктом (MTU) и RTU, числа контролируемых точек, требований по пропускной способности и надежности канала, наличия доступных коммерческих линий связи.
    Тенденцией развития CS как структурного компонента SCADA-систем можно считать использование не только большого разнообразия выделенных каналов связи (ISDN, ATM и пр.), но также и корпоративных компьютерных сетей и специализированных индустриальных шин.
    В современных промышленных, энергетических и транспортных системах большую популярность завоевали индустриальные шины специализированные быстродействующие каналы связи, позволяющие эффективно решать задачу надежности и помехоустойчивости соединений на разных иерархических уровнях автоматизации. Существует три основных категории индустриальных шин, характеризующие их назначение (место в системе) и сложность передаваемой информации: Sensor, Device, Field. Многие индустриальные шины охватывают две или даже все три категории.

    Из всего многообразия индустриальных шин, применяющихся по всему миру (только по Германии их установлено в различных системах около 70 типов) следует выделить промышленный вариант Ethernet и PROFIBUS, наиболее популярные в настоящее время и, по-видимому, наиболее перспективные. Применение специализированных протоколов в промышленном Ethernet позволяет избежать свойственного этой шине недетерминизма (из-за метода доступа абонентов CSMA/CD), и в то же время использовать его преимущества как открытого интерфейса. Шина PROFIBUS в настоящее время является одной из наиболее перспективных для применения в промышленных и транспортных системах управления; она обеспечивает высокоскоростную (до 12 Мбод) помехоустойчивую передачу данных (кодовое расстояние = 4) на расстояние до 90 км. На основе этой шины построена, например, система автоматизированного управления движением поездов в варшавском метро.

    [ http://www.mka.ru/?p=41524]

    Тематики

    EN

     

    компьютерные науки
    вычислительная техника (как область знаний)

    Общее название для совокупности дисциплин, связанных с конструированием компьютеров и их использованием в обработке информации.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    контроль носителя
    Функция, постоянно выполняемая станцией и обеспечивающая ей определение процесса передачи другой станцией.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    криптографическая система
    КС

    Набор преобразований из незашифрованного текста в шифротекст и наоборот. Конкретное(ые) преобразование(я), которое(ые) должно(ы) использоваться, выбирается(ются) ключами. Преобразования обычно описывается математическим алгоритмом.
    Рекомендация МСЭ-Т X.509.
    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    Синонимы

    • КС

    EN

     

    криптосистема
    КС

    Криптосистема - алгоритм, который может преобразовывать входные данные в нечто нераспознаваемое (шифрование) и обратно преобразовывать нераспознаваемые данные в их исходную форму (дешифрование). Методы шифрования RSA описаны в Рек. МСЭ-Т X.509.
    Рекомендация МСЭ-Т Q.815.
    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    Синонимы

    • КС

    EN

     

    ливень короны (в электрофильтре)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    лист изменений
    (напр. перечень изменений, внесённых в контракт)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    набор возможностей
    Набор атрибутов услуг интеллектуальной сети, который в соответствии с рекомендацией ITU-T (серия Q.1200) разбит на 8 групп (CS-1-CS-8). Начальный набор возможностей CS-1 ориентирован на поддержку услуг, которые предоставляются единственному пользователю и контролируются в одной точке доступа, т.е. относятся только к одному участнику связи и к сети одного провайдера. Набор межсетевых услуг определен в рекомендации CS-2, а требования к управлению процессом предоставления услуг регламентируются в CS-3 и CS-4.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    набор возможностей интеллектуальной сети (этап стандартизации)

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    подуровень конвергенции
    Общие процедуры и функции, обеспечивающие преобразование между ATM и другими форматами. Этот термин служит для обозначения верхней половины уровня AAL, а также описывает функции преобразования между отличными от ATM протоколами (frame relay, SMDS) и протоколами ATM выше уровня AAL. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    регулируемый останов

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    сегмент линии
    (МСЭ-Т Y.1541).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сепаратор конденсата

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    управляемый останов
    (напр. турбины)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    шкала уровней серого цвета
    Возможное количество отображаемых оттенков серого цвета.
    [ http://www.morepc.ru/dict/]

    шкала уровней серого
    яркостная шкала

    Ряд оттенков (обычно 10) от истинно черного до истинно белого.
    [ http://www.vidimost.com/glossary.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > CS

  • 14 communication system

    1. система связи
    2. канал связи (в SCADA)

     

    канал связи
    -
    [Интент]

    Каналы связи (CS)
    Каналы связи для современных диспетчерских систем отличаются большим разнообразием; выбор конкретного решения зависит от архитектуры системы, расстояния между диспетчерским пунктом (MTU) и RTU, числа контролируемых точек, требований по пропускной способности и надежности канала, наличия доступных коммерческих линий связи.
    Тенденцией развития CS как структурного компонента SCADA-систем можно считать использование не только большого разнообразия выделенных каналов связи (ISDN, ATM и пр.), но также и корпоративных компьютерных сетей и специализированных индустриальных шин.
    В современных промышленных, энергетических и транспортных системах большую популярность завоевали индустриальные шины специализированные быстродействующие каналы связи, позволяющие эффективно решать задачу надежности и помехоустойчивости соединений на разных иерархических уровнях автоматизации. Существует три основных категории индустриальных шин, характеризующие их назначение (место в системе) и сложность передаваемой информации: Sensor, Device, Field. Многие индустриальные шины охватывают две или даже все три категории.

    Из всего многообразия индустриальных шин, применяющихся по всему миру (только по Германии их установлено в различных системах около 70 типов) следует выделить промышленный вариант Ethernet и PROFIBUS, наиболее популярные в настоящее время и, по-видимому, наиболее перспективные. Применение специализированных протоколов в промышленном Ethernet позволяет избежать свойственного этой шине недетерминизма (из-за метода доступа абонентов CSMA/CD), и в то же время использовать его преимущества как открытого интерфейса. Шина PROFIBUS в настоящее время является одной из наиболее перспективных для применения в промышленных и транспортных системах управления; она обеспечивает высокоскоростную (до 12 Мбод) помехоустойчивую передачу данных (кодовое расстояние = 4) на расстояние до 90 км. На основе этой шины построена, например, система автоматизированного управления движением поездов в варшавском метро.

    [ http://www.mka.ru/?p=41524]

    Тематики

    EN

     

    система связи
    система передачи информации

    Совокупность передатчиков, приемников и каналов, осуществляющая передачу информации.
    [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > communication system

  • 15 company

    1. компания

     

    компания
    Профессиональная группа людей
    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    компания
    Объединение предпринимателей для совместного ведения бизнеса. В России деятельность компаний регламентируется Гражданским кодексом, они могут принимать различные формы: акционерного общества ( АО), общества с ограниченной ответственностью (ООО), коммандитного товарищества (или товарищества на вере) и некоторые другие. Чаще всего К. создаются в форме акционерных обществ открытого (ОАО) и закрытого типа (ЗАО). В первом случае их акции свободно продаются на рынке, во втором — нет. Акционерным обществом признается такое, уставный капитал которого разделен на определенное число акций, участники его не отвечают по обязательствам общества и несут риск убытков, связанных с его деятельностью, только в пределах стоимости принадлежащих им акций. Приоритетной целью управления компанией является максимизация богатства акционеров с помощью выплаты дивидендов или через повышение стоимости капитала компании. Доход в расчете на одну акцию является обычно используемым стандартом при оценке успешности управления такой К.. В ряде стран существует разделение компаний на частные и публичные. Объединение капиталов, усилий и способностей предпринимателей, соединенных в К., дает им существенные преимущества, которые и являются первопричиной широкого распространения компаний в рыночных экономиках (См. Коуза теорема).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > company

  • 16 enterprise resource planning

    1. системы планирования и управления ресурсами предприятия
    2. планирование ресурсов предприятия - система
    3. планирование ресурсов предприятия
    4. планирование ресурсов предприятий
    5. планирование корпоративных ресурсов

     

    планирование корпоративных ресурсов
    планирование ресурсов в масштабе предприятия

    Распределение ресурсов между большим числом пользователей, процессов или каналов для разрешения конфликтов при одновременном обращении к одним и тем же ресурсам нескольких пользователей.
    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    планирование ресурсов предприятия
    1. Метод для эффективного планирования и контроля всех ресурсов, необходимых для того, чтобы принять, сделать, отгрузить и учесть заказы клиентов в производственной, дистрибуторской или сервисной компании. (Обратите внимание, что определение изменилось).
    2. Рамки для организации, определения и стандартизации бизнес-процессов, необходимых для эффективного планирования и контроля организации таким образом, чтобы организация могла использовать внутренние знания для поиска внешнего преимущества.
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    EN

     

    планирование ресурсов предприятия - система
    1. Финансово-ориентированная информационная система для определения и планирования ресурсов всего предприятия, необходимых для того, чтобы принять, сделать, отгрузить и отразить в учете заказы клиентов. Система ERP отличается от типичной системы MRP II техническими характеристиками, такими как графический интерфейс пользователя, реляционная база данных, использование языков четвертого поколения и программным инструментарием для разработки, архитектурой клиент/сервер и переносимостью на принципах открытых систем.
    2. Более широко, это метод для эффективного планирования и контроля всех ресурсов, необходимых для того, чтобы принять, сделать, отгрузить и учесть заказы клиентов в производственной, дистрибуторской или сервисной компании.
    (Примечание автора перевода: это определение имело место в 10-ой версии APICS Dictionary, а в 11-ой версии данного словаря автор перевода его не обнаружил. Здесь термин приводится, так как примечателен сам факт исключения этого определения)
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > enterprise resource planning

  • 17 ERP

    1. эталонная точка уха
    2. эквивалентная излучаемая мощность
    3. системы планирования и управления ресурсами предприятия
    4. система планирования бизнес-ресурсов
    5. процедура восстановления после (появления) ошибок
    6. программа восстановления окружающей среды
    7. планирование ресурсов предприятия - система
    8. планирование ресурсов предприятия
    9. планирование ресурсов предприятий
    10. планирование противоаварийных мероприятий
    11. планирование корпоративных ресурсов

     

    планирование корпоративных ресурсов
    планирование ресурсов в масштабе предприятия

    Распределение ресурсов между большим числом пользователей, процессов или каналов для разрешения конфликтов при одновременном обращении к одним и тем же ресурсам нескольких пользователей.
    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    планирование противоаварийных мероприятий

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    планирование ресурсов предприятия
    1. Метод для эффективного планирования и контроля всех ресурсов, необходимых для того, чтобы принять, сделать, отгрузить и учесть заказы клиентов в производственной, дистрибуторской или сервисной компании. (Обратите внимание, что определение изменилось).
    2. Рамки для организации, определения и стандартизации бизнес-процессов, необходимых для эффективного планирования и контроля организации таким образом, чтобы организация могла использовать внутренние знания для поиска внешнего преимущества.
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    EN

     

    планирование ресурсов предприятия - система
    1. Финансово-ориентированная информационная система для определения и планирования ресурсов всего предприятия, необходимых для того, чтобы принять, сделать, отгрузить и отразить в учете заказы клиентов. Система ERP отличается от типичной системы MRP II техническими характеристиками, такими как графический интерфейс пользователя, реляционная база данных, использование языков четвертого поколения и программным инструментарием для разработки, архитектурой клиент/сервер и переносимостью на принципах открытых систем.
    2. Более широко, это метод для эффективного планирования и контроля всех ресурсов, необходимых для того, чтобы принять, сделать, отгрузить и учесть заказы клиентов в производственной, дистрибуторской или сервисной компании.
    (Примечание автора перевода: это определение имело место в 10-ой версии APICS Dictionary, а в 11-ой версии данного словаря автор перевода его не обнаружил. Здесь термин приводится, так как примечателен сам факт исключения этого определения)
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    EN

     

    программа восстановления окружающей среды
    (после аварии на ТЭС, АЭС)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процедура восстановления после (появления) ошибок

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    система планирования бизнес-ресурсов
    Информационная система, ориентированная на бухгалтерский учет, для идентификации и планирования ресурсов по всему предприятию, необходимых для принятия, изготовления, отгрузки и учета заказов клиентов. Система ERP отличается от типичной системы MRP II по техническим требованиям, таким как графический интерфейс пользователя, реляционная база данных, использование языка четвертого поколения и новейших компьютерных программных средств конструирования, архитектура клиент/сервер и мобильность открытой системы.
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    EN

     

    эквивалентная излучаемая мощность
    ЭИМ

    Характеристика мощности излучения, определяемая как произведение излучаемой мощности на коэффициент усиления полуволнового вибратора.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    EN

     

    эталонная точка уха
    Условная точка геометрического эталонного значения, расположенная на входе уха слушающего, которая традиционно используется для расчета телефонометрических значений громкости (МСЭ-Т P.10/ G.100, МСЭ-T G.1020).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > ERP

  • 18 relational data base

    1. реляционная база данных
    2. Реля ционная база данных

     

    реляционная база данных
    База данных, реализованная в соответствии с реляционной моделью данных.
    [ ГОСТ 20886-85]

    реляционная БД

    База данных, логически организованная в виде набора отношений ее компонентов.
    Характерной особенностью реляционной базы данных является структура, выполненная в виде таблиц. Строки таких таблиц соответствуют записям, столбцы - атрибутам (признакам хранимых данных). Например, таблица, в которой имеются столбцы: фамилия, год рождения, место работы, домашний адрес, телефон, а в строках записываются эти сведения о сотрудниках предприятия. Такие данные являются ядром реляционной базы.
    Использование реляционных баз данных позволяет:
    собирать и хранить данные в виде таблиц;
    обновлять их содержание;
    получать разнообразную информацию по атрибутам или записям;
    отображать полученные данные в виде диаграмм или таблиц;
    выполнять необходимые расчеты по материалам базы.
    (Терминологическая база данных по информатике и бизнесу [Электронный ресурс])
    [ http://www.morepc.ru/dict/]


    Системы управления реляционными базами данных


    Процесс отделения программ от структур данных завершили, в конечном итоге, реляционные базы данных (РБД).

    В РБД все данные представлены исключительно в формате таблиц, или, по терминологии реляционной алгебры, отношений (relation). Таблица в реляционной алгебре - это неупорядоченное множество записей (строк), состоящих из одинакового набора полей (столбцов). Каждая строка характеризует некий объект, каждый столбец - одну из его характеристик. Совокупность таких связанных таблиц и составляет БД, при этом таблицы полностью равноправны - между ними не существует никакой иерархии. Реляционная модель является простейшей и наиболее привычной формой представления данных.

    Можно было бы привести более строгое определение, но это не является пред-метом настоящей статьи. Здесь нам важно отметить следующее. РБД позволили моделям данных отражать взаимосвязи прикладной области, а не методы программного доступа к данным и структурам данных. Это огромный шаг вперед по нескольким причинам:

    Отражающие прикладную область знаний модели данных являются интуитивно понятными конечному пользователю.

    Реорганизация данных на физическом уровне совершенно не влияет на выпол-нение прикладных программ. Одним из важнейших побочных эффектов данного преимущества является появление клиент-серверных архитектур, сохраняющих все достоинства централизованного администрирования и управления данными, с одной стороны, и дружески настроенных по отношению к пользователю клиентских программ, с другой. Благодаря нормализации удается избежать чрезмерного дублирования данных.

    По идее, с точки зрения быстродействия, реляционные СУБД должны проигры-вать сетевым и иерархическим моделям. Однако специальные методы, в частности, индексирование БД, позволяют поддерживать их скоростные характеристики на достаточно высоком уровне.

    Развитие РБД

    По мере все более широкого распространения реляционных моделей данных крупные поставщики БД расширяли функциональные возможности, повышали производительность в борьбе за место на рынке. В качестве примеров новых функций можно привести следующее:
    • Хранимые процедуры
      Откомпилированные последовательности SQL-операторов, которые хранятся в БД. Хранимые процедуры исполняются быстрее обычных SQL-операторов, уменьшают объем сетевого трафика и скрывают сложность SQL-выражений от конечного пользователя.
    • Триггеры
      Последовательности SQL-операторов, автоматически запускаемые сервером при возникновении определенных, связанных с данными событий. Обычно они используются для поддержания целостности данных и выполнения таких, связанных с модификацией данных, операций, как трассировка (распечатка программой связанных с ее выполнением событий) и аудирование (ведение журнала событий с целью обеспечения безопасности вычислительной системы.).
       
    • Дублирование и рассредоточение.
      Довольно часто с целью повышения произво-дительности, безопасности и готовности информации приходится дублировать данные на удаленных БД. Например, дублировать хранящуюся на удаленном сервере итоговую производственную информацию в центральной БД.
       
    • Взаимодействие с другими системами.
      После того, как электронная почта приобрела широкую популярность, поставщики БД разработали интерфейс, позволяющий посылать определенные почтовые сообщения в момент возникновения определенных, связанных с операциями над данными, событиями.
    [ http://www.rtsoft-training.ru/?p=600017]

    Тематики

    Синонимы

    EN

    14. Реля ционная база данных

    Relational data base

    База данных, реализованная в соответствии с реляционной моделью данных

    Источник: ГОСТ 20886-85: Организация данных в системах обработки данных. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > relational data base

  • 19 Relational Database

    1. реляционная база данных

     

    реляционная база данных
    База данных, реализованная в соответствии с реляционной моделью данных.
    [ ГОСТ 20886-85]

    реляционная БД

    База данных, логически организованная в виде набора отношений ее компонентов.
    Характерной особенностью реляционной базы данных является структура, выполненная в виде таблиц. Строки таких таблиц соответствуют записям, столбцы - атрибутам (признакам хранимых данных). Например, таблица, в которой имеются столбцы: фамилия, год рождения, место работы, домашний адрес, телефон, а в строках записываются эти сведения о сотрудниках предприятия. Такие данные являются ядром реляционной базы.
    Использование реляционных баз данных позволяет:
    собирать и хранить данные в виде таблиц;
    обновлять их содержание;
    получать разнообразную информацию по атрибутам или записям;
    отображать полученные данные в виде диаграмм или таблиц;
    выполнять необходимые расчеты по материалам базы.
    (Терминологическая база данных по информатике и бизнесу [Электронный ресурс])
    [ http://www.morepc.ru/dict/]


    Системы управления реляционными базами данных


    Процесс отделения программ от структур данных завершили, в конечном итоге, реляционные базы данных (РБД).

    В РБД все данные представлены исключительно в формате таблиц, или, по терминологии реляционной алгебры, отношений (relation). Таблица в реляционной алгебре - это неупорядоченное множество записей (строк), состоящих из одинакового набора полей (столбцов). Каждая строка характеризует некий объект, каждый столбец - одну из его характеристик. Совокупность таких связанных таблиц и составляет БД, при этом таблицы полностью равноправны - между ними не существует никакой иерархии. Реляционная модель является простейшей и наиболее привычной формой представления данных.

    Можно было бы привести более строгое определение, но это не является пред-метом настоящей статьи. Здесь нам важно отметить следующее. РБД позволили моделям данных отражать взаимосвязи прикладной области, а не методы программного доступа к данным и структурам данных. Это огромный шаг вперед по нескольким причинам:

    Отражающие прикладную область знаний модели данных являются интуитивно понятными конечному пользователю.

    Реорганизация данных на физическом уровне совершенно не влияет на выпол-нение прикладных программ. Одним из важнейших побочных эффектов данного преимущества является появление клиент-серверных архитектур, сохраняющих все достоинства централизованного администрирования и управления данными, с одной стороны, и дружески настроенных по отношению к пользователю клиентских программ, с другой. Благодаря нормализации удается избежать чрезмерного дублирования данных.

    По идее, с точки зрения быстродействия, реляционные СУБД должны проигры-вать сетевым и иерархическим моделям. Однако специальные методы, в частности, индексирование БД, позволяют поддерживать их скоростные характеристики на достаточно высоком уровне.

    Развитие РБД

    По мере все более широкого распространения реляционных моделей данных крупные поставщики БД расширяли функциональные возможности, повышали производительность в борьбе за место на рынке. В качестве примеров новых функций можно привести следующее:
    • Хранимые процедуры
      Откомпилированные последовательности SQL-операторов, которые хранятся в БД. Хранимые процедуры исполняются быстрее обычных SQL-операторов, уменьшают объем сетевого трафика и скрывают сложность SQL-выражений от конечного пользователя.
    • Триггеры
      Последовательности SQL-операторов, автоматически запускаемые сервером при возникновении определенных, связанных с данными событий. Обычно они используются для поддержания целостности данных и выполнения таких, связанных с модификацией данных, операций, как трассировка (распечатка программой связанных с ее выполнением событий) и аудирование (ведение журнала событий с целью обеспечения безопасности вычислительной системы.).
       
    • Дублирование и рассредоточение.
      Довольно часто с целью повышения произво-дительности, безопасности и готовности информации приходится дублировать данные на удаленных БД. Например, дублировать хранящуюся на удаленном сервере итоговую производственную информацию в центральной БД.
       
    • Взаимодействие с другими системами.
      После того, как электронная почта приобрела широкую популярность, поставщики БД разработали интерфейс, позволяющий посылать определенные почтовые сообщения в момент возникновения определенных, связанных с операциями над данными, событиями.
    [ http://www.rtsoft-training.ru/?p=600017]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > Relational Database

  • 20 innovation

    сущ.
    1) общ. инновация, новшество, нововведение, рационализаторское предложение (изменение технологии, организации производства или самого продукта, которое осуществляется с целью достижения более высокой эффективности или создания новой ценности);

    managerial innovation — инновация в сфере управления [менеджмента\], управленческая инновация

    Syn:
    See:
    2) эк. инновации, осуществление инноваций (как процесс; употребляется без артикля или как атрибут)

    planned [purposeful\] innovation — планируемые инновации

    Based partially on the belief that innovation is not possible under perfect competition, many thousands papers have been written about the nature of innovation under monopoly or oligopoly. — Тысячи статей были посвящены природе инновационного процесса в ситуации монополии и олигополии, предполагая невозможность осуществления инноваций в условиях совершенной конкуренции

    See:
    3) соц. инновационность (по Мертону: тип адаптации индивида к новым социокультурным реалиям, когда принимаются социальные цели, но не способы их достижения: напр., рэкет, подделки денег, воровство, злоупотребления)
    See:

    * * *
    инновация: нововведение, создание и внедрение нового продукта или услуги, позитивные изменения, усовершенствование; см. financial innovation.
    * * *
    новшество; нововведение
    . . Словарь экономических терминов .
    * * *
    вложение средств в экономику, обеспечивающее смену поколений техники и технологии
    -----
    любой новый подход к конструированию, производству или сбыту товара, в результате чего инноватор и его компания получают преимущества перед конкурентами

    Англо-русский экономический словарь > innovation

См. также в других словарях:

  • Преимущества службы — в отдаленных местностях предоставлены офицерам и чиновникам всех ведомств, служащим в Сибири и Туркестане, в Уральской области (в военном ведомстве только в зауральской ее части), в Закавказье и 5 округах Терской области (Грозненском, Хасав… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Программное обеспечение управления портфелем проектов — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей …   Википедия

  • Электродистанционная система управления — Прямое (не fly by wire) управление самолётом Электродистанционная система управления (ЭДСУ, Fly by Wire) система управления (например, самолётом), обеспечивающая передачу управляющих сигналов от лётчика (от РУС или РППУ) к исполнительным… …   Википедия

  • Система управления версиями — (от англ. Version Control System, VCS или Revision Control System)  программное обеспечение для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при …   Википедия

  • Реостатно-контакторная система управления — (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая, троллейбуса и железных дорог. Содержание 1 Принцип действия …   Википедия

  • Непосредственная система управления — Центральным звеном НСУ является контроллер тяговых электродвигателей Непосредственная система управления (сокр. НСУ)  комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей… …   Википедия

  • Институт управленческих кадров Академии управления при Президенте Республики Беларусь — Институт управленческих кадров (ИУК) Оригинальное название Інстытут кіруючых кадраў Международное название Managerial Personnel Institute Прежнее название …   Википедия

  • Система управления содержимым — Пример системы управления сайтом (администраторская панель Joomla! 1.6) Система управления содержимым (контентом) (англ.  …   Википедия

  • Факультет государственного управления МГУ им. М.В. Ломоносова — Факультет государственного управления МГУ им. М.В. Ломоносова. (ФГУ МГУ) один из факультетов Московского государственного университета. Факультет государственного управления Московский государственный университет им. М.В. Ломоносова …   Википедия

  • Система управления отходами — Тип мусорного контейнера в Беркшире, Англия …   Википедия

  • Магистерская программа «Информационные системы управления предприятием» — Факультет вычислительной математики и кибернетики Московский государственный университет имени М. В. Ломоносова …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»